C++ STL Unordered Map – std::unordered_map

In this tutorial you will learn about stl unordered map container i.e. std::unordered_map and all functions applicable on it.

By its name we can say that it comes under Associative containers with Unordered property. We know that any unordered container internally implemented with hash tables. So same has hashing concept in worst case any operation takes O(n) time and in average and best case it takes O(1) time. We can say it vary based on type of hash function we used. With comparison to map containers these work efficiently to find value by using key. And one main difference is that map elements are order but unordered map elements are not in order. Since it is based on key-value pair concept all keys must be unique.

C++ STL Unordered Map – std::unordered_map

Iterators that can be applicable on Unordered map:

begin(): returns iterator to the beginning

end(): returns iterator to the end of the container.

cbegin(): Returns constant iterator to the beginning.

cend(): Returns constant iterator to the end.

To work with unordered map we can separately include unordered_map header file. That is:

#include <unordered_map>

Functions applicable on unordered map:

Inserting and printing:

Here we can insert using index operator []. Main advantage of these key-value type of containers is to store relevant information.

Example:

Andhra – Amaravathi

Telangana – Hyderabad

Odisha – Bhubaneswar

Like this we can store these type of information. Here state names are keys and their capitals are values.

Or we can compare these things with dictionaries in python. For simply understanding and to show all functions on these unordered map  here I am using keys 0, 1, 2, . . . n. And values are user choice. But remember both key and value can be different data types.

Method 1: We can insert using based on key.

Ex: unMap[key] = value;

Method 2: Using insert() function.

Using this we can directly include key and value pair at a time. To say that those are pair, we should use make_pair function.

Since container storing key – value pairs, we use combination of iterators and pointers (“first” for key and “second” for value).

Below example code explains these clearly:

Output

Enter value for key 0
10
Enter value for key 1
20
Enter value for key 2
30
Enter value for key 3
40
Enter value for key 4
50
(Key , Value)
(10 , 100)
(4 , 50)
(0 , 10)
(1 , 20)
(2 , 30)
(3 , 40)

Other modification functions on unordered map:

erase(): We can remove using key. Then key and corresponding value both will be deleted. And by pointing iterator to some pair, we can delete that.

swap(): swaps elements of Unordered map1 to Unordered map2 and vice-versa. Swapping can be done successfully even both containers have different sizes.

clear(): removes all elements in the Unordered map. It results container size to 0.

Example program to show above function:

Output

key – value pairs in unordered map are
(Key , Value)
(4 , 14)
(0 , 10)
(1 , 11)
(2 , 12)
(3 , 13)
Erasing pair whcih has key value 3
Erasing first pair
Remaining pairs are
(Key , Value)
(0 , 10)
(1 , 11)
(2 , 12)
New unordered map elements are
(Key , Value)
(4 , 104)
(0 , 100)
(1 , 101)
(2 , 102)
(3 , 103)
Performing swap operation…….
After swap operation second unordered map is
(Key , Value)
(0 , 10)
(1 , 11)
(2 , 12)
After swap operation unMap1 is
(Key , Value)
(4 , 104)
(0 , 100)
(1 , 101)
(2 , 102)
(3 , 103)
Applying clear operation on unMap2
Now unMap2 is
(Key , Value)

Functions related to capacity:

empty(): returns a Boolean value whether unordered_map is empty or not.

size(): returns present size of the container.

max_size(): returns the maximum size a map can have.

Output

Size of the unordered map is 5
Maximum Size of the unordered map is 1152921504606846975
Unordered map is not empty

Comment below if you have any queries related to stl unordered map.

Leave a Comment

Your email address will not be published. Required fields are marked *